Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 7(8): 1180-1188, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35836002

RESUMO

SARS-CoV-2 variants may threaten the effectiveness of vaccines and antivirals to mitigate serious COVID-19 disease. This is of most concern in clinically vulnerable groups such as older adults. We analysed 72 sera samples from 37 individuals, aged 70-89 years, vaccinated with two doses of BNT162b2 (Pfizer-BioNTech) 3 weeks apart, for neutralizing antibody responses to wildtype SARS-CoV-2. Between 3 and 20 weeks after the second vaccine dose, neutralizing antibody titres fell 4.9-fold to a median titre of 21.3 (neutralization dose 80%), with 21.6% of individuals having no detectable neutralizing antibodies at the later time point. Next, we examined neutralization of 21 distinct SARS-CoV-2 variant spike proteins with these sera, and confirmed substantial antigenic escape, especially for the Omicron (B.1.1.529, BA.1/BA.2), Beta (B.1.351), Delta (B.1.617.2), Theta (P.3), C.1.2 and B.1.638 spike variants. By combining pseudotype neutralization with specific receptor-binding domain (RBD) enzyme-linked immunosorbent assays, we showed that changes to position 484 in the spike RBD were mainly responsible for SARS-CoV-2 neutralizing antibody escape. Nineteen sera from the same individuals boosted with a third dose of BNT162b2 contained higher neutralizing antibody titres, providing cross-protection against Omicron BA.1 and BA.2. Despite SARS-CoV-2 immunity waning over time in older adults, booster vaccines can elicit broad neutralizing antibodies against a large number of SARS-CoV-2 variants in this clinically vulnerable cohort.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Glicoproteínas de Membrana/química , Testes de Neutralização , SARS-CoV-2/genética , Proteínas do Envelope Viral/química
2.
Commun Biol ; 5(1): 409, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505237

RESUMO

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.


Assuntos
COVID-19 , Quirópteros , Animais , COVID-19/terapia , Quirópteros/metabolismo , Humanos , Imunização Passiva , Glicoproteínas de Membrana/metabolismo , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética , Soroterapia para COVID-19
3.
Cell Rep ; 38(6): 110344, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35093235

RESUMO

SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs, and farmed mink. Since the start of the 2019 pandemic, several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all three mink adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.


Assuntos
Adaptação Biológica/imunologia , SARS-CoV-2/genética , Zoonoses Virais/genética , Animais , COVID-19 , Furões/imunologia , Aptidão Genética/genética , Humanos , Vison/imunologia , Mutação , Pandemias , Sistema Respiratório/virologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia
4.
Viruses ; 13(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834923

RESUMO

Mosquito-borne viruses of the Flavivirus genus (Flaviviridae family) pose an ongoing threat to global public health. For example, dengue, Japanese encephalitis, West Nile, yellow fever, and Zika viruses are transmitted by infected mosquitoes and cause severe and fatal diseases in humans. The means by which mosquito-borne flaviviruses establish persistent infection in mosquitoes and cause disease in humans are complex and depend upon a myriad of virus-host interactions, such as those of the innate immune system, which are the main focus of our review. This review also covers the different strategies utilized by mosquito-borne flaviviruses to antagonize the innate immune response in humans and mosquitoes. Given the lack of antiviral therapeutics for mosquito-borne flaviviruses, improving our understanding of these virus-immune interactions could lead to new antiviral therapies and strategies for developing refractory vectors incapable of transmitting these viruses, and can also provide insights into determinants of viral tropism that influence virus emergence into new species.


Assuntos
Culicidae/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/veterinária , Flavivirus/imunologia , Infecção Persistente/imunologia , Infecção Persistente/veterinária , Animais , Culicidae/fisiologia , Culicidae/virologia , Flavivirus/genética , Flavivirus/fisiologia , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Humanos , Imunidade Inata , Mosquitos Vetores/imunologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Infecção Persistente/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...